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Poised Chromatin

Promoters can exist in three major states: an active state, a repressed state, and an intermediate, or
“poised” state (see Figure 3.14 in the text). This poised chromatin state allows for a rapid response
to developmental signals, and it characterizes the high CpG-content promoters (HCPs) that regulate
the transcription of developmental control genes. The DNA of HCPs is relatively unmethylated, and
nucleosomes tend to be enriched with “activating” H3K4me3. As a result, RNA poly- merase Il is
usually already present on HCPs (Hon et al. 2009; Ernst and Kellis 2010). Indeed, there is often a
small, truncat- ed transcript of nRNA already initiated (but not completed) at these promoters (see
Figure 2.15). DNA methylation does not appear to play a major role in HCP regulation. Rather,
HCPs can be repressed by modifying the histone 3 to H3K27me3, which recruits Polycomb
repressive complex 2 (Peng et al. 2009; Li et al. 2010), a complex that appears to inhibit further RNA
polymerase Il binding as well as preventing elongation of the existing nRNA transcripts.

HCPs become poised for activation by having nucleo- somes containing both H3K4me3 (activating)
and H3K27me3 (repressive) histones (this is sometimes called a bivalent state). Thus, the rate-
limiting step of RNA transcription from HCPs is not the initiation of transcription (as it is in the LCPs),
but RNA elongation. This “poised for activation” state may be predominant during early development
(Muse et al. 2007; Zeitlinger 2007). The genes may be put into an active state by specific
transcription factors that activate the elongation of RNA transcripts (Peterlin and Price 2006), and
they may be repressed later in development (Hargreaves et al. 2009; Ramirez-Carrozzi et al. 2009;
Rahl et al. 2010).

These transcription factors may act on several levels to promote RNA elongation. In mammalian
cells, where about 30% of the genes have promoters that already contain RNA polymerase Il and
nascent RNA chains (Core and Lis 2008), transcription factors appear to act through the Mediator
complex. Here transcription is paused because the RNA polymerase |l remains tethered to TFIID,
which remains bound to the promoter sequence of the gene. This tethering is accomplished by the
Mediator complex, especially by the Mediator protein Med26, which binds the Mediator to TFIID
(Figure 1). In order to elongate the RNA, a signal must enable the multiprotein transcription
elongation com- plex (TEC) to compete with TFIID for the favors of Med26. Once the transcription
elongation complex frees the RNA polymerase Il from TFIID, RNA polymerase Il can become
phosphorylated and travel along the DNA to transcribe the gene (Takahashi et al. 2011).
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Figure 1 Model for the regulation of RNA elongation by the Mediator protein Med26. In the initiation

and early elongation phase of transcription, the Mediator tethers RNA polymerase Il to TFIID at the

promoter through its Med26 protein. The Med26 protein can also bind to the transcription elongation

complex (TEC). Transcription elongation can be reactivated by transcription factors promoting the
binding of Med26 to the TEC rather than to TFIID. (After Takahashi et al. 2011.)

Drosophila may use a slightly different mechanism to pause the transcription from HCPs. In many of
these genes, there appears to be a DNA sequence in the proximal promoter (i.e., the sequences of
the promoter closest to the exons) that acts as a “pause button” (Hendrix et al. 2008). About 1500
genes in Drosophila embryos have RNA polymerase |l already on their promoters, and these genes
are primarily those active in regulating early development (Muse et al. 2007; Zeitlinger et al. 2007). It
is possible that these “pause button” sequences may be more difficult to unwind, and the presence
of the poly- merase may enable elongation inhibitory factors to assemble there (Levine 2011).

But how does the release of a single transcript influence the synthesis of that protein? It certainly
takes more than one transcript to produce significant amounts of gene product. In some cases, it
appears that the transcript of the paused poly- merase can recruit histone-activating proteins,
enabling fur- ther transcription to occur as soon as elongation commences (Petesch and Lis 2008). It
is also possible that paused RNA polymerase Il prevents the assembly of new nucleosomes on the
promoter, keeping the gene in an open configuration (Gilchrist et al. 2010; Nechaev et al. 2010).

Thus, both high and low CpG-content promoters regulate RNA synthesis, but they do so in different
manners. LCPs are usually turned off, requiring transcription factors to enable gene expression by
promoting access of RNA polymerase Il to the DNA. HCPs already have initiated transcription, but
transcription is not completed. Here, developmental signals allow the elongation of the nascent



nRNA. Both LCPs and HCPs have repressed states that prevent transcription, as well as poised
states that enable the genes to be transcribed immediately when the appropriate signal is received.
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