Effects of the Dorsal Protein Gradient

What does the Dorsal protein do once it is located in the nuclei of the ventral cells? A look at the fate map of a cross section through the *Drosophila* embryo at the division cycle 14 shows that the 16 cells with the highest concentration of Dorsal are those that generate the mesoderm (textbook Figure 10.27). The next cell up from this region generates the specialized glial and neural cells of the midline. The next two cells give rise to the ventrolateral epidermis and ventral nerve cord, and the nine cells above them produce the dorsal epidermis. The most dorsal group of six cells generates the amnioserosal covering of the embryo (Ferguson and Anderson 1991). This fate map is generated by the gradient of Dorsal protein in the nuclei. Large amounts of Dorsal instruct the cells to become mesoderm, whereas lesser amounts instruct the cells to become glial or ectodermal tissue (Jiang and Levine 1993; Hong et al. 2008).

The first morphogenetic event of *Drosophila* gastrulation is the invagination of the 16 ventralmost cells of the embryo to create the ventral furrow. All of the body muscles, fat bodies, and gonads derive from these mesodermal cells (Foe 1989). Dorsal protein specifies these cells to become mesoderm in two ways. First, the protein activates specific genes that create the mesodermal phenotype. Five of the target genes for the Dorsal protein are *twist*, *snail*, *fgf8*, *fgf8 receptor*, and *rhomboid*. These genes are transcribed only in nuclei that have received high concentrations of Dorsal, since their enhancers do not bind Dorsal with a very high affinity (Thisse et al. 1988, 1991; Jiang et al. 1991; Pan et al. 1991). Both Snail and Twist are also needed for the complete mesodermal phenotype and proper gastrulation (Leptin et al. 1991b). The Twist protein activates mesodermal genes, whereas the Snail protein represses particular non-mesodermal genes that might otherwise be active. The combination of Snail and Twist transcription factors in the future mesoderm cells also induces myosin contractile proteins to accumulate at the apical ends of the mesoderm cells. This localization enables the future mesoderm to respond to random wavelike contraction events by invaginating into the embryo (Pouille et al. 2009).

The *rhomboid* and *fgf8* genes are interesting because they are activated by Dorsal but repressed by Snail. Thus, *rhomboid* and *fgf8* are not expressed in the most ventral cells (i.e., the mesodermal precursors) but are expressed in the cells adjacent to the mesoderm. These *rhomboid*- and *fgf8*-expressing cells will become the mesectoderm. The mesectoderm tissue is fated to become the ventral midline, once the mesoderm invaginates and brings these ventrolateral regions together. This mesectoderm gives rise to glial cells and to the midline structures of the central nervous system. Unlike the neurogenic ectoderm adjacent to it, the mesectoderm cells never form typical neuroblasts, never form epidermis, and are not a stem cell population.

The high concentration of Twist protein in the nuclei of the ventralmost cells activates the gene for the Fgf8 receptor (the product of the *heartless* gene) in the presumptive mesoderm (Jiang and Levine 1993; Gryzik and Müller 2004; Strathopoulos et al. 2004). The expression and secretion of Fgf8 by the presumptive neural ectoderm is received by its receptor on the mesoderm cells, causing these mesoderm cells to invaginate into the embryo and flatten against the ectoderm.

Meanwhile, *intermediate* levels of nuclear Dorsal activate transcription of the *Short gastrulation* (*Sog*) gene in two lateral stripes that flank the ventral *twist* expression domain, each 12–14 cells wide (François et al. 1994; Srinivasan et al. 2002). *Sog* encodes a protein that prevents the ectoderm in this region from becoming epidermis and begins the processes of neural differentiation. At gastrulation, when the mesoderm (at the most ventral region) invaginates into the embryo, the *Sog*-expressing cells become the most ventral cells.

Dorsal protein also determines the mesoderm indirectly. In addition to activating the mesodermstimulating genes (twist and snail), it directly inhibits the dorsalizing genes zerknüllt (zen) and decapentaplegic (dpp). Thus, in the same cells Dorsal can act as an activator of some genes and a repressor of others. Whether Dorsal activates or represses a given gene depends on the structure of the gene's enhancers. The zen enhancer has a silencer region that contains a binding site for Dorsal as well as a second binding site for two other DNA-binding proteins. These two other proteins enable Dorsal to bind a transcriptional repressor protein (Groucho) and bring it to the DNA (Valentine et al. 1998). Mutants of dorsal express dpp and zen genes throughout the embryo (Rushlow et al. 1987), and embryos deficient in *dpp* and *zen* fail to form dorsal structures (Irish and Gelbart 1987). Thus, in wild-type embryos, the mesodermal precursors express twist and snail (but not zen or dpp); precursors of the dorsal epidermis and amnioserosa express zen and dpp (but not twist or snail). Glial (mesectoderm) precursors express twist and rhomboid, while the lateral neural ectodermal precursors do not express any of these five genes (Kosman et al. 1991; Ray and Schüpbach 1996). By the cellular responses to the Dorsal protein gradient, the embryo becomes subdivided from the ventral to dorsal regions into mesoderm, neurogenic ectoderm, epidermis (from the lateral and dorsal ectoderm), and amnioserosa.

Literature Cited

Ferguson, E. L and K. V. Anderson. 1991. Dorsal-ventral pattern formation in the *Drosophila* embryo: The role of zygotically active genes. *Curr. Top. Dev. Biol.* 25: 17–43.

Foe, V. E. 1989. Mitotic domains reveal early commitment of cells in *Drosophila* embryos. *Development* 107: 1–22.

François, V., M. Solloway, J. W. O'Neill, J. Emery and E. Bier. 1994. Dorsal-ventral patterning of the *Drosophila* embryo depends on a putative negative growth factor encoded by the *short gastrulation* gene. *Genes Dev.* 8: 2602–2616.

Gryzik, T. and H. A. Müller. 2004. *FGF8-like1* and *FGF8-like2* encode putative ligands of the FGF receptor htl and are required for mesodermal migration in the *Drosophila* gastrula. *Curr. Biol.* 14: 659–667.

Hong, J. W., D. A. Hendrix, D. Papatsenko and M. S. Levine. 2008. How the Dorsal gradient works: Insights from postgenome technologies. *Proc. Nat. Acad. Sci. USA* 105(51): 20072–20076.

Irish, V. F. and W. M. Gelbart. 1987. The *decapentaplegic* gene is required for dorsal-ventral patterning of the *Drosophila* embryo. *Genes Dev.* 1: 868–879.

Jiang, J., D. Kosman, Y. T. Ip and M. Levine. 1991. The dorsal morphogen gradient regulates the mesoderm determinant twist in early *Drosophila* embryos. *Genes Dev.* 5: 1881–1891.

Jiang, J. and M. Levine. 1993. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. *Cell* 72: 741–752.

Jiang, J., D. Kosman, Y. T. Ip and M. Levine. 1991. The dorsal morphogen gradient regulates the mesoderm determinant twist in early *Drosophila* embryos. *Genes Dev.* 5: 1881–1891.

Kosman, D., C. M. Mizutani, D. Lemons, W. G. Cox, W. McGinnis and E. Bier. 2004. Multiplex detection of RNA expression in *Drosophila*embryos. *Science* 305: 846.

Leptin, M. 1991a. Mechanics and genetics of cell shape changes during *Drosophila* ventral furrow formation. *In* R. Keller et al. (eds.), *Gastrulation: Movements, Patterns, and Molecules*. Plenum, New York, pp. 199–212.

Pouille, P. A., P. Ahmadi, A. C. Brunet and E. Farge. 2009. Mechanical signals trigger Myosin II redistribution and mesoderm invagination in *Drosophila* embryos. *Sci. Signal*. 2(66): ra16.

Rushlow, C., J. Frasch, H. Doyle and M. Levine. 1987. Maternal regulation of zerknüllt: A homeobox gene controlling differentiation of dorsal tissues in *Drosophila*. *Nature* 330: 583–586.

Srinivasan, S, K. E. Rashka and E. Bier. 2002. Creation of a Sog morphogen gradient in the *Drosophila* embryo. *Dev. Cell* 2: 91–101.

Strathopoulos, A., B. Tam, M. Ronshaugen, M. Frasch and M. Levine. 2004. *pyramus* and *thisbe*: FGF genes that pattern the mesoderm of *Drosophila* embryos. *Genes Dev.* 18: 687–699.

Thisse, B., C. Stoetzel, C. Gorostiza-Thisse and F. Perrin-Schmidt. 1988. Sequence of the *twist* gene and nuclear localization of its protein in endomesodermal cells of early *Drosophila* embryos. *EMBO J.* 7: 2175–2183.

Thisse, C., F. Perrin-Schmitt, C. Stoetzel and B. Thisse. 1991. Sequence-specific *trans* activation of the *Drosophila twist* gene by *dorsal*gene product. *Cell* 65: 1191–1201.

Valentine, S. A., G. Chen, T. Shandala, J. Fernandez, S. Mische, R. Saint and A. J. Courney. 1998. Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. *Mol. Cell Biol.* 18: 6584–6594.

All the material on this website is protected by copyright. It may not be reproduced in any form without permission from the copyright holder.

© 2023 Oxford University Press |