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The Mathematics of Growth 
Developmental biology has been described as the last refuge of the mathematically incompetent 
scientist. This phenomenon, however, is not going to last. While most embryologists have been 
content trying to analyze specific instances of development or even formulating some general 
principles of embryology, some researchers are now seeking the laws of development. The goal of 
these investigators is to base embryology on formal mathematical or physical principles (see Held 
1992; Webster and Goodwin 1996). Pattern formation and growth are two areas in which such 
mathematical modeling has given biologists interesting insights into some underlying laws of animal 
development. 

The mathematics of organismal growth 

Most animals grow by increasing their volume while retaining their proportions. Theoretically, an 
animal that increases its weight (volume) twofold will increase its length only 1.26 times (as 1.263 = 
2). W. K. Brooks (1886) observed that this ratio was frequently seen in nature, and he noted that the 
deep-sea arthropods collected by the Challenger expedition increased about 1.25 times between 
molts. In 1904, Przibram and his colleagues performed a detailed study of mantises and found that 
the increase of size between molts was almost exactly 1.26 (see Przibram 1931). Even the 
hexagonal facets of the arthropod eye (which grow by cell expansion, not by cell division) increased 
by that ratio. 

D’Arcy Thompson (1942) similarly showed that the spiral growth of shells (and fingernails) can be 
expressed mathematically (r = aθ), and that the ratio of the widths between two whorls of a shell can 
be calculated by the formula r = e2πcotθ (Figure 1). Thus, if a whorl were 1 inch in breadth at one point 
on a radius and the angle of the spiral were 80°, the next whorl would have a width of 3 inches on 
the same radius. Most gastropod (snail) and nautiloid mollusks have an angle of curvature between 
80° and 85°.* Lower-angle curvatures are seen in some shells (mostly bivalves) and are common in 
teeth and claws. 



 

Figure 1 Equiangular spiral growth patterns. René Descartes’ analysis of an equiangular spiral, 
showing that if the curve cuts each radius vector at a constant angle (symbolized by theta;), then the 
curve grows continuously without ever changing its shape. (After Thompson 1942.) 

Such growth, in which the shape is preserved because all components grow at the same rate, is 
called isometric growth. In many organisms, growth is not a uniform phenomenon. It is obvious that 
there are some periods in an organism's life during which growth is more rapid than in others. 
Physical growth during the first 10 years of person's existence is much more dramatic than in the 10 
years following one's graduation from college. Moreover, not all parts of the body grow at the same 
rate. This phenomenon of the different growth rates of parts within the same organism is 
called allometric growth (or allometry). In humans, arms and legs grow at a faster rate than the torso 
and head, such that adult proportions differ markedly from those of infants. Julian Huxley (1932) 
likened allometry to putting money in the bank at two different continuous interest rates. 

The formula for allometric growth (or for comparing moneys invested at two different interest rates) 
is y = bx a/c, where a and c are the growth rates of two body parts, and b is the value of y when x = 1. 
If a/c > 1, then that part of the body represented by a is growing faster than that part of the body 
represented by c. In logarithmic terms (which are much easier to graph), log y = log b + (a/c)log x. 

One of the most vivid examples of allometric growth is seen in the male fiddler crab, Uca pugnax. In 
small males, the two claws are of equal weight, each constituting about 8% of the crab's total weight. 
As the crab grows larger, its chela (the large crushing claw) grows even more rapidly, eventually 
constituting about 38% of the crab's weight (Figure 2). When these data are plotted on double 
logarithmic plots (the body mass on the x axis, the chela mass on the y axis), one obtains a straight 
line whose slope is the a/c ratio. In the male Uca pugnax (whose name is derived from the huge 
claw), the a/c ratio is 6:1. This means that the mass of the chela increases six times faster than the 
mass of the rest of the body. In females of the species, the claw remains about 8% of the body 
weight throughout growth. It is only in the males (who use the claw for defense and display) that this 
allometry occurs. 



 

Figure 2 In this male fiddler crab, Allometric growth occurs only in one of the male's claws. In females 
(not shown), both claws retain isometric growth. (Rushen! on VisualHunt / CC BY-SA.) 
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